Halaman

Minggu, 21 Oktober 2012

Pendidikan Kesehatan



Diajukan Untuk memenuhi Salah Satu Tugas
Mata Pendidikan Kesehatan






Disusun Oleh :
Dede Nurhidayat       2124090096


Kelas   :           II B



PRODI PENDIDIKAN JASMANI KESEHATAN DAN REKREASI
FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN
UNIVERSITAS GALUH CIAMIS
2010
PEMBAHASAN


A.        OKSIDAN
Akhir-akhir ini perhatian dunia kedokteran terhadap oksidan makin meningkat. Perhatian ini terutama ditimbulkan oleh kesadaran bahwa oksidan dapat menimbulkan kerusakan sel, dan menjadi penyebab atau mendasari berbagai keadaan patologik seperti penyakit kardiovaskuler, penyakit respiratorik, gangguan sistem tanggap kebal, karsinogenesis, bahkan dicurigai ikut berperan dalam proses penuaan (aging). Sebagian mekanisme kerusakan oleh oksidan telah diketahui, tetapi sebagian lagi karena rumitnya proses –proses yang terkait, masih belum sepenuhnya jelas.
Oksidan dapat mengganggu integritas sel karena dapat bereaksi dengan komponen-komponen sel yang penting untuk mempertahankan kehidupan sel, baik komponen struktural (misalnya molekul-molekul penyusun membran) maupun komponen-komponen fungsional (misalnya enzim-enzim dan DNA). Oksidan yang dapat me-rusak sel berasal dari berbagai sumber, yaitu :
a.   yang berasal dari tubuh sendiri, yaitu senyawa-senyawa yang sebenarnya berasal dari proses-proses biologik normal (fisiologis), namun oleh suatu sebab terdapat dalam jumlah besar
            b.   yang berasal dari proses-proses peradangan.
c.   yang berasal dari luar tubuh, seperti misalnya obat-obatan dan senyawa pencemar (polutant)
d.   yang berasal dari akibat radiasi
a.         Oksidan dan Radikal Bebas
Dalam kepustakaan kedokteran pengertian oksidan dan radikal bebas (free radicals) sering dibaurkan karena keduanya memiliki sifat-sifat yang mirip. Aktivitas kedua jenis senyawa ini sering menghasilkan akibat yang sama walaupun prosesnya berbeda. Sebagai contoh perhatikan dampak H2O2 (hidrogen peroksida) dan radikal bebas ·OH (radikal hidroksil) terhadap glutation (GSH) :

a. H2O2 :
GSH  +  H2O2   ¾®   GSSG  +  2H2O
b.·OH  :
GSH  +    ·OH    ¾®    H2O  +   GS·  (radikal glutation)
GS·  +    GS·   ¾®    GSSG
Walaupun ada kemiripan dalam sifat-sifatnya namun dipandang dari sudut ilmu kimia, keduanya harus dibedakan. Oksidan, dalam pengertian ilmu kimia, adalah senyawa penerima elektron, (electron acceptor), yaitu senyawa-senyawa yang dapat menarik elektron. Ion ferri (Fe+++), misalnya, adalah suatu oksidan :
Fe+++     +   e-      ¾®      Fe++
Sebaliknya, dalam pengertian ilmu kimia, radikal bebas adalah atom atau molekul (kumpulan atom) yang memiliki elektron yang tak berpasangan (unpaired electron)Sebagai contoh marilah kita perhatikan molekul air (H2O). Ikatan atom oksigen dengan hidrogen merupakan ikatan kovalen, yaitu ikatan kimia yang timbul karena sepasang elektron dimiliki bersama (share) oleh dua atom.
    Atom  hidrogen :     ·H
                                                                                                                                                                                                                                                                                                                                                                                                                                            
                Atom oksigen :          ·O·     dan H2O  :      H:O :H   atau  H– O –H

Bila terdapat sumber energi yang cukup besar, misalnya radiasi, molekul air dapat mengalami pembelahan homolitik (homolytical cleavage ) :
H:O:H   ¾®  H·     +    ·O-H
                                                                   atom H     radikal hidroksil
Atom H ( ·H)  memiliki elektron yang tak berpasangan sehingga dapat pula dianggap sebagai radikal.. Molekul air dapat pula mengalami pembelahan jenis lain, yaitu pembelahan heterolitik (heterolytical cleavage )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
H:O:H   ¾®   H+     +    :O -H-
                                                                                                                                                                                                                                                                                                                                                                                                              ion H                                                           ion hidroksil

Dalam hal ini, yang terbentuk bukanlah radikal tetapi ion-ion, sehingga proses tersebut dinamakan ionisasi. Untuk ionisasi molekul air tak diperlukan masukan energi yang besar, sehingga dalam keadaan “biasa” air mengalami ionisasi.
Elektron yang tak berpasangan cenderung untuk membentuk pasangan, dan ini terjadi dengan menarik  elektron  dari senyawa lain sehingga terbentuk radikal baru :
X:H       +      ·O-H          ¾®          X·    +      H-O-H                                                                                                                              radikal hidroksil                                                  radikal baru
Dari contoh diatas jelaslah bahwa radikal bebas memiliki dua sifat, yaitu :
1. Reaktivitas tinggi, karena kecenderungan menarik elektron.
2. Dapat mengubah suatu molekul menjadi suatu radikal
Sifat radikal bebas yang mirip dengan oksidan terletak pada kecenderungannya untuk menarik elektron.Jadi sama halnya dengan oksidan, radikal bebas adalah penerima elektron. Itulah sebabnya dalam kepustakaan kedokteran, radikal bebas digolongkan dalam oksidan. Namun perlu diingat bahwa radikal bebas adalah oksidan tetapi tidak setiap oksidan adalah radikal bebas.
Radikal bebas lebih berbahaya dibanding dengan oksidan yang bukan radikal. Hal ini disebabkan oleh kedua sifat radikal bebas diatas, yaitu reaktifitas yang tinggi dan kecenderungannya membentuk radikal baru, yang pada gilirannya apabila menjumpai molekul lain akan membentuk radikal baru lagi, sehingga terjadilah rantai reaksi (chain reaction) Reaksi rantai tersebut baru berhenti apabila radikal bebas tersebut dapat diredam (quenched). Contohnya ialah reaksi radikal hidroksil dengan glutation yang telah dibahas diatas.. Reaksi akan berhenti karena dua radikal glutation (GS·) akan bereaksi membentuk glutation teroksidasi (GSSG). Seluruh reaksi radikal bebas dapat dijabarkan menjadi 3 (tiga) tahap, yaitu :
1. tahap inisiasi
2. tahap propagasi
3. tahap terminasi
Sebagai contoh marilah kita perhatikan reaksi-reaksi yang menyangkut reaksi radikal hidroksil sebagai berikut :
1.      Tahap inisiasi
Fe++        +   H2O2      ¾®     Fe+++    +   OH-   +   ·OH .
R1-H     +   ·OH      ®      R1·      +    H2O
2.      Tahap propagasi :
                    R2-H     +   R1·    ®   R2·    +    R1-H                    
                     R3-H   +   R2·   ®    R3·   +     R2-H
3.      Tahap terminasi  :
                     R1·  +    R1·   ®   R1-R1
                      R2·   +   R1·  ®   R2- R1
                      R2·   +   R2·  ®   R2- R2         dan seterusnya
Daya perusak radikal bebas dengan demikian jauh lebih besar dibandingkan dengan oksidan biasa. Karena reaktifitasnya yang tinggi, radikal bebas tak stabil dan berumur sangat pendek sehingga sulit dideteksi kecuali dengan metoda-metoda khusus seperti  pengukuran EPR (Electron Paramagnetic Resonance )
Walaupun reaktifitas radikal bebas pada umumnya cukup tinggi sehingga berumur pendek, namun ada beberapa jenis radikal bebas yang relatif stabil. Salah satu contoh adalah radikal bebas vitamin E. Berkat struktur molekulnya yang memungkinkan terjadinya resonansi, radikal vitamin E tak perlu reaktif, sehingga dapat berfungsi sebagai peredam (quencer).
B.        ANTIOKSIDAN
            Antioksidan adalah bahan tambahan yang digunakan untuk melindungi komponen-komponen makanan yang bersifat tidak jenuh (mempunyai ikatan rangkap), terutama lemak dan minyak. Meskipun demikian antioksidan dapat pula digunakan untuk melindungi komponen lain seperti vitamin dan pigmen, yang juga banyak mengandung ikatan rangkap di dalam strukturnya
Mekanisme kerja antioksidan secara umum adalah menghambat oksidasi lemak. Untuk mempermudah pemahaman tentang mekanisme kerja antioksidan perlu dijelaskan lebih dahulu mekanisme oksidasi lemak. Oksidasi lemak terdiri dari tiga tahap utama yaitu inisiasi, propagasi, dan terminasi. Pada tahap inisiasi terjadi pembentukan radikal asam lemak, yaitu suatu senyawa turunan asam lemak yang bersifat tidak stabil dan sangat reaktif akibat dari hilangnya satu atom hidrogen (reaksi 1). pada tahap selanjutnya, yaitu propagasi, radikal asam lemak akan bereaksi dengan oksigen membentuk radikal peroksi (reaksi 2). Radikal peroksi lebih lanjut akan menyerang asam lemak menghasilkan hidroperoksida dan radikal asam lemak baru (reaksi 3).
Inisiasi : RH ---- R* + H* (1)
Propagasi : R* + O2 -----ROO* (2)
ROO* + RH -----ROOH +R* (3)
Hidroperoksida yang terbentuk bersifat tidak stabil dan akan terdegradasi lebih lanjut menghasilkan senyawa-senyawa karbonil rantai pendek seperti aldehida dan keton yang bertanggungjawab atas flavor makanan berlemak. Tanpa adanya antioksidan, reaksi oksidasi lemak akan mengalami terminasi melalui reaksi antar radikal bebas membentuk kompleks bukan radikal (reaksi 4)
Terminasi : ROO* +ROO* ---- non radikal (reaksi 4)
R* + ROO* ---- non radikal   R* + R* ----- non radikal
Antioksidan yang baik akan bereaksi dengan radikal asam lemak segera setelah senyawa tersebut terbentuk. Dari berbagai antioksidan yang ada, mekanisme kerja serta kemampuannya sebagai antioksidan sangat bervariasi. Seringkali, kombinasi beberapa jenis antioksidan memberikan perlindungan yang lebih baik (sinergisme) terhadap oksidasi dibanding dengan satu jenis antioksidan saja. Sebagai contoh asam askorbat seringkali dicampur dengan antioksidan yang merupakan senyawa fenolik untuk mencegah reaksi oksidasi lemak.
Adanya ion logam, terutama besi dan tembaga, dapat mendorong terjadinya oksidasi lemak. Ion-ion logam ini seringkali diinaktivasi dengan penambahan senyawa pengkelat dapat juga disebut bersifat sinergistik dengan antioksidan karena menaikan efektivitas antioksidan utamanya. Suatu senyawa untuk dapat digunakan sebagai antioksidan harus mempunyai sifat-sifat : tidak toksik, efektif pada konsentrasi rendah (0,01-0,02%), dapat terkonsentrasi pada permukaan/lapisan lemak (bersifat lipofilik) dan harus dapat tahap pada kondisi pengolahan pangan umumnya.
Berdasarkan sumbernya antioksidan dapat digolongkan ke dalam dua jenis yaitu jenis pertama, antioksidan yang bersifat alami, seperti komponen fenolik/flavonoid, vitamin E, vitamin C dan beta-karoten dan jenis ke dua, adalah antioksidan sintetis seperti BHA (butylated hydroxyanisole), BHT (butylated hydroxytoluene, propil galat (PG), TBHQ (di-t-butyl hydroquinone). Tabel 1. Menunjukan komponen-komponen flavonoid yang memiliki aktivitas antioksidan beserta sumbernya. BHA (Butylated Hydroanisole). BHA merupakan campuran dari 2 isomer yaitu 2- dan 3-tertbutilhidroksianisol . Diantara ke dua isomer, isomer 3-tert memiliki aktifitas antioksidan yang lebih efektif dari isomer 2-tert. Bentuk fisik dari BHA adalah padatan putih menyerupai lilin, bersifat larut dalam lemak dan tidak larut dalam air
BHT (Butylated Hydroxytoluene). Sifat-sifat BHT sangat mirip dengan BHA dan bersinergis dengan BHA. Propil Galat. Propil galat merupakan ester dari propanol dari asam trihidroksi benzoat. Bentuk fisik dari propil galat adalah kristal putih. Propil galat memiliki sifat-sifat : (1) dapat bersinergis dengan BHA dan BHT, (2) sensitif terhadap panas, (3) membentuk kompleks berwarna dengan ion logam, oleh karenanya jika dipakai dalam makanan kaleng dapat mempengaruhi penampakan produk.
TBHQ (Tertiary Butylhydroquinone). TBHQ merupakan antioksidan yang paling efektif dalam minyak makan dibandingkan BHA, BHT, PG dan tokoferol. TBHQ memiliki sifat-sifat (1) bersinergis dengan BHA (2) cukup larut dalam lemak (3) tidak membentuk komplek dengan ion logam tetapi dapat berubah menjadi merah muda, jika bereaksi dengan basa. Dosis pengunaan dari masing-masing antioksidan sintetik ini tidak sama untuk masing-masing negara. Tabel 2 menunjukkan dosis pemakaian antioksid BHA, BHT, Galat dan TBHQ pada beberapa Negara

Tidak ada komentar:

Posting Komentar